Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.712
Filtrar
1.
Sci Rep ; 14(1): 6102, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480729

RESUMO

The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.


Assuntos
Córtex Cerebral , Telencéfalo , Camundongos , Animais , Telencéfalo/metabolismo , Córtex Cerebral/metabolismo , Encéfalo/metabolismo , Mamíferos/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Stem Cell Reports ; 19(4): 515-528, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518783

RESUMO

In most vertebrates, adult neural stem cells (NSCs) continuously give rise to neurons in discrete brain regions. A critical process for maintaining NSC pools over long periods of time in the adult brain is NSC quiescence, a reversible and tightly regulated state of cell-cycle arrest. Recently, lysosomes were identified to regulate the NSC quiescence-proliferation balance. However, it remains controversial whether lysosomal activity promotes NSC proliferation or quiescence, and a finer influence of lysosomal activity on NSC quiescence duration or depth remains unexplored. Using RNA sequencing and pharmacological manipulations, we show that lysosomes are necessary for NSC quiescence maintenance. In addition, we reveal that expression of psap, encoding the lysosomal regulator Prosaposin, is enriched in quiescent NSCs (qNSCs) that reside upstream in the NSC lineage and display a deep/long quiescence phase in the adult zebrafish telencephalon. We show that shRNA-mediated psap knockdown increases the proportion of activated NSCs (aNSCs) as well as NSCs that reside in shallower quiescence states (signed by ascl1a and deltaA expression). Collectively, our results identify the lysosomal protein Psap as a (direct or indirect) quiescence regulator and unfold the interplay between lysosomal function and NSC quiescence heterogeneities.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Saposinas/genética , Saposinas/metabolismo , Peixe-Zebra/metabolismo , Telencéfalo/metabolismo , Encéfalo/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Células-Tronco Adultas/metabolismo
3.
Dev Growth Differ ; 66(3): 219-234, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378191

RESUMO

The vertebrate telencephalic lobes consist of the pallium (dorsal) and subpallium (ventral). The subpallium gives rise to the basal ganglia, encompassing the pallidum and striatum. The development of this region is believed to depend on Foxg1/Foxg1a functions in both mice and zebrafish. This study aims to elucidate the genetic regulatory network controlled by foxg1a in subpallium development using zebrafish as a model. The expression gradient of foxg1a within the developing telencephalon was examined semi-quantitatively in initial investigations. Utilizing the CRISPR/Cas9 technique, we subsequently established a foxg1a mutant line and observed the resultant phenotypes. Morphological assessment revealed that foxg1a mutants exhibit a thin telencephalon together with a misshapen preoptic area (POA). Notably, accumulation of apoptotic cells was identified in this region. In mutants at 24 h postfertilization, the expression of pallium markers expanded ventrally, while that of subpallium markers was markedly suppressed. Concurrently, the expression of fgf8a, vax2, and six3b was shifted ventrally, causing anomalous expression in regions typical of POA formation in wild-type embryos. Consequently, the foxg1a mutation led to expansion of the pallium and disrupted the subpallium and POA. This highlights a pivotal role of foxg1a in directing the dorsoventral patterning of the telencephalon, particularly in subpallium differentiation, mirroring observations in mice. Additionally, reduced expression of neural progenitor maintenance genes was detected in mutants, suggesting the necessity of foxg1a in preserving neural progenitors. Collectively, these findings underscore evolutionarily conserved functions of foxg1 in the development of the subpallium in vertebrate embryos.


Assuntos
Redes Reguladoras de Genes , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Telencéfalo/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
4.
Sci Rep ; 14(1): 3395, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336823

RESUMO

Developmental neurogenesis is a tightly regulated spatiotemporal process with its dysregulation implicated in neurodevelopmental disorders. NMDA receptors are glutamate-gated ion channels that are widely expressed in the early nervous system, yet their contribution to neurogenesis is poorly understood. Notably, a variety of mutations in genes encoding NMDA receptor subunits are associated with neurodevelopmental disorders. To rigorously define the role of NMDA receptors in developmental neurogenesis, we used a mutant zebrafish line (grin1-/-) that lacks all NMDA receptors yet survives to 10 days post-fertilization, offering the opportunity to study post-embryonic neurodevelopment in the absence of NMDA receptors. Focusing on the forebrain, we find that these fish have a progressive supernumerary neuron phenotype confined to the telencephalon at the end of embryonic neurogenesis, but which extends to all forebrain regions during postembryonic neurogenesis. This enhanced neuron population does not arise directly from increased numbers or mitotic activity of radial glia cells, the principal neural stem cells. Rather, it stems from a lack of timely maturation of transit-amplifying neuroblasts into post-mitotic neurons, as indicated by a decrease in expression of the ontogenetically-expressed chloride transporter, KCC2. Pharmacological blockade with MK-801 recapitulates the grin1-/- supernumerary neuron phenotype, indicating a requirement for ionotropic signaling. Thus, NMDA receptors are required for suppression of indirect, transit amplifying cell-driven neurogenesis by promoting maturational termination of mitosis. Loss of suppression results in neuronal overpopulation that can fundamentally change brain circuitry and may be a key factor in pathogenesis of neurodevelopmental disorders caused by NMDA receptor dysfunction.


Assuntos
Células-Tronco Neurais , Receptores de N-Metil-D-Aspartato , Animais , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Telencéfalo/metabolismo
5.
Dev Growth Differ ; 66(2): 145-160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263801

RESUMO

Nuclear receptor subfamily 2 group F (Nr2f) proteins are essential for brain development in mice, but little is known about their precise roles and their evolutionary diversification. In the present study, the expression patterns of major nr2f genes (nr2f1a, nr2f1b, and nr2f2) during early brain development were investigated in zebrafish. Comparisons of their expression patterns revealed similar but temporally and spatially distinct patterns after early somite stages in the brain. Frameshift mutations in the three nr2f genes, achieved using the CRISPR/Cas9 method, resulted in a smaller telencephalon and smaller eyes in the nr2f1a mutants; milder forms of those defects were present in the nr2f1b and nr2f2 mutants. Acridine orange staining revealed enhanced cell death in the brain and/or eyes in all nr2f homozygous mutants. The expression of regional markers in the brain did not suggest global defects in brain regionalization; however, shha expression in the preoptic area and hypothalamus, as well as fgf8a expression in the anterior telencephalon, was disturbed in nr2f1a and nr2f1b mutants, potentially leading to a defective telencephalon. Specification of the retina and optic stalk was also significantly affected. The overexpression of nr2f1b by injection of mRNA disrupted the anterior brain at a high dose, and the expression of pax6a in the eyes and fgf8a in the telencephalon at a low dose. The results of these loss- and gain-of-function approaches showed that nr2f genes regulate the development of the telencephalon and eyes in zebrafish embryos.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Encéfalo/metabolismo , Telencéfalo/metabolismo , Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
6.
Elife ; 122023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37489039

RESUMO

The dorsal telencephalon (i.e. the pallium) exhibits high anatomical diversity across vertebrate classes. The non-mammalian dorsal pallium accommodates various compartmentalized structures among species. The developmental, functional, and evolutional diversity of the dorsal pallium remain unillustrated. Here, we analyzed the structure and epigenetic landscapes of cell lineages in the telencephalon of medaka fish (Oryzias latipes) that possesses a clearly delineated dorsal pallium (Dd2). We found that pallial anatomical regions, including Dd2, are formed by mutually exclusive clonal units, and that each pallium compartment exhibits a distinct epigenetic landscape. In particular, Dd2 possesses a unique open chromatin pattern that preferentially targets synaptic genes. Indeed, Dd2 shows a high density of synapses. Finally, we identified several transcription factors as candidate regulators. Taken together, we suggest that cell lineages are the basic components for the functional regionalization in the pallial anatomical compartments and that their changes have been the driving force for evolutionary diversity.


Assuntos
Córtex Cerebral , Telencéfalo , Animais , Córtex Cerebral/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vertebrados/metabolismo , Evolução Biológica
7.
Genome Res ; 33(4): 658-671, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072188

RESUMO

The zebrafish telencephalon is composed of highly specialized subregions that regulate complex behaviors such as learning, memory, and social interactions. The transcriptional signatures of the neuronal cell types in the telencephalon and the timeline of their emergence from larva to adult remain largely undescribed. Using an integrated analysis of single-cell transcriptomes of approximately 64,000 cells obtained from 6-day-postfertilization (dpf), 15-dpf, and adult telencephalon, we delineated nine main neuronal cell types in the pallium and eight in the subpallium and nominated novel marker genes. Comparing zebrafish and mouse neuronal cell types revealed both conserved and absent types and marker genes. Mapping of cell types onto a spatial larval reference atlas created a resource for anatomical and functional studies. Using this multiage approach, we discovered that although most neuronal subtypes are established early in the 6-dpf fish, some emerge or expand in number later in development. Analyzing the samples from each age separately revealed further complexity in the data, including several cell types that expand substantially in the adult forebrain and do not form clusters at the larval stages. Together, our work provides a comprehensive transcriptional analysis of the cell types in the zebrafish telencephalon and a resource for dissecting its development and function.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Neurônios/metabolismo , Telencéfalo/metabolismo
8.
Stem Cells Dev ; 32(9-10): 246-257, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785975

RESUMO

Mfge8, a secreted glycoprotein, is a key molecule that mediates the phagocytosis of apoptotic cells. Previous research reported that Mfge8 is critical for the proliferation and differentiation of radial glial cells (RGCs) in the dentate gyrus of adult mice. The treatment of Mfge8 is also beneficial for the repair of central nervous system (CNS) injury after cerebral ischemia. This study aimed to investigate whether the expression of mfge8a in zebrafish embryos was associated with the development of CNS and larval behavior. We found that zebrafish mfge8a was initially expressed at 48 hpf, and its expression was gradually increased in the ventricular zone. Knocking down mfge8a with antisense morpholino oligonucleotides impaired both spontaneous and photoinduced swimming locomotion in the behavioral tests. The neurogenesis analysis in telencephalon showed that mfge8a morphants excessively promoted neural differentiation over self-renewal after RGCs division, and consequently depleted proliferative RGC population during early neurogenesis. Furthermore, downregulation of mfge8a was shown to alter the expression patterns of genes associated with Notch signaling pathway. Our results demonstrated that mfge8a is involved in the maintenance of the progenitor identity of RGCs in embryonic zebrafish brain through regulating Notch signaling pathway, thereby contributing to consistent neurogenesis and locomotor development.


Assuntos
Células-Tronco Neurais , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Células-Tronco Neurais/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Neurogênese/genética , Glicoproteínas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Telencéfalo/metabolismo
9.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766852

RESUMO

Diabetic rat embryos have increased cortical neurogenesis and neuron maturation, and their offspring presented altered neuron polarity, lamination, and diminished neuron excitability. The FOXP2 overexpression results in higher cortical neurogenesis by increasing the transition of radial glia to the intermediate progenitor. Similarly, histamine through H1-receptor activation increases cortical neuron differentiation. Indeed, blocking the H1-receptor by the systemic administration of chlorpheniramine to diabetic pregnant rats prevents increased neurogenesis. Here, we explore the relationship between the H1-receptor and FOXP2 on embryo neurogenesis from diabetic dams. Through qRT-PCR, Western blot, immunohistofluorescence, and flow cytometry, we showed an increased FOXP2 expression and nuclear localization, a reduced Nestin expression and -positive cells number, and a higher PKCα expression in the cortical neuroepithelium of fourteen-day-old embryos from diabetic rats. Interestingly, this scenario was prevented by the chlorpheniramine systemic administration to diabetic pregnant rats at embryo day twelve. These data, together with the bioinformatic analysis, suggest that higher H1-receptor activity in embryos under high glucose increases FOXP2 nuclear translocation, presumably through PKCα phosphorylation, impairing the transition of radial glia to intermediate progenitor and increasing neuron differentiation in embryos of diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Células-Tronco Neurais , Animais , Feminino , Gravidez , Ratos , Clorfeniramina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Histamina/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteína Quinase C-alfa/metabolismo , Telencéfalo/metabolismo , Receptores Histamínicos H1
10.
J Morphol ; 284(2): e21553, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36601705

RESUMO

Androgens and their receptors are present throughout the body. Various structures such as muscles, genitals, and prostate express androgen receptors. The central nervous system also expresses androgen receptors. Androgens cross the blood-brain barrier to reach these central areas. In the central nervous system, androgens are involved in multiple functions. The current study investigated in which forebrain areas androgens are expressed in the male cat. Androgen receptor immunoreactive (AR-IR) nuclei were plotted and the results were quantified with a Heidelberg Topaz II + scanner and Linocolor 5.0 software. The density and intensity of the labeled cells were the main outcomes of interest. The analysis revealed a dense distribution of AR-IR nuclei in the preoptic area, periventricular complex of the hypothalamus, posterior hypothalamic area, ventromedial hypothalamic, parvocellular hypothalamic, infundibular, and supramammillary nucleus. Numerous AR-IR cells were also observed in the dorsal division of the anterior olfactory nucleus, lateral septal nucleus, medial and lateral divisions of the bed nucleus of the stria terminalis, lateral olfactory tract nucleus, anterior amygdaloid area, and the central and medial amygdaloid nuclei. AR-IR nuclei were predominantly observed in areas involved in autonomic and neuroendocrinergic responses which are important for many physiological processes and behaviors.


Assuntos
Receptores Androgênicos , Telencéfalo , Animais , Masculino , Androgênios , Hipotálamo , Receptores Androgênicos/metabolismo , Telencéfalo/metabolismo , Gatos
11.
Anat Rec (Hoboken) ; 306(4): 879-888, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36056623

RESUMO

Marsupials are born very immature and crawl on their mother's belly to attach to teats. Sensory information is required to guide the newborn and to induce attachment to the teat. Olfaction has been classically proposed to influence neonatal behaviors, but recent studies suggest that the central olfactory structures are too immature to account for them. In the newborn opossum, we previously described a fascicle of nerve fibers expressing neurofilament-200 (NF200, a marker of fiber maturity) from the olfactory bulbs to the rostral telencephalon. The course of these fibers is compatible with that of the terminal nerve that, during development, is characterized by the presence of neurons synthetizing gonadotropin hormones (GnRH). To evaluate if these fibers are related to the terminal nerve and if they play a role in precocious behaviors in opossums, we used immunohistochemistry against NF200 and GnRH. The results show that NF200-labeled fibers are present between P0 and P11, but do not reach much further caudally than the septal region. Only a few NF200-labeled fibers were found near the olfactory and vomeronasal epitheliums and they did not penetrate the olfactory bulbs. NF200-labeled fibers follow the same path as fibers labeled for GnRH. In contrast to the latter, NF200-labeled fibers are no longer visible at P15. These results suggest that these fibers are neither from the olfactory nor from the vomeronasal nerves but may be part of the terminal nerve. Their limited caudal extension does not support a role in the sensorimotor behaviors of the newborn opossum.


Assuntos
Monodelphis , Animais , Telencéfalo/metabolismo , Bulbo Olfatório , Septo Nasal/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
12.
Dev Dyn ; 252(3): 377-399, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36184733

RESUMO

BACKGROUND: Homeobox transcription factor encoding genes, genomic screen homeobox 1 and 2 (gsx1 and gsx2), are expressed during neurodevelopment in multiple vertebrates. However, we have limited knowledge of the dynamic expression of these genes through developmental time and the gene networks that they regulate in zebrafish. RESULTS: We confirmed that gsx1 is expressed initially in the hindbrain and diencephalon and later in the optic tectum, pretectum, and cerebellar plate. gsx2 is expressed in the early telencephalon and later in the pallium and olfactory bulb. gsx1 and gsx2 are co-expressed in the hypothalamus, preoptic area, and hindbrain, however, rarely co-localize in the same cells. gsx1 and gsx2 mutant zebrafish were made with TALENs. gsx1 mutants exhibit stunted growth, however, they survive to adulthood and are fertile. gsx2 mutants experience swim bladder inflation failure that prevents survival. We also observed significantly reduced expression of multiple forebrain patterning distal-less homeobox genes in mutants, and expression of foxp2 was not significantly affected. CONCLUSIONS: This work provides novel tools with which other target genes and functions of Gsx1 and Gsx2 can be characterized across the central nervous system to better understand the unique and overlapping roles of these highly conserved transcription factors.


Assuntos
Proteínas de Homeodomínio , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Bulbo Olfatório/metabolismo , Telencéfalo/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
13.
Brain Behav Evol ; 98(2): 61-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36574764

RESUMO

The amygdala is a complex brain structure in the vertebrate telencephalon, essential for regulating social behaviors, emotions, and (social) cognition. In contrast to the vast majority of neuron types described in the many nuclei of the mammalian amygdala, little is known about the neuronal diversity in non-mammals, making reconstruction of its evolution particularly difficult. Here, we characterize glutamatergic neuron types in the amygdala of the urodele amphibian Pleurodeles waltl. Our single-cell RNA sequencing data indicate the existence of at least ten distinct types and subtypes of glutamatergic neurons in the salamander amygdala. These neuron types are molecularly distinct from neurons in the ventral pallium (VP), suggesting that the pallial amygdala and the VP are two separate areas in the telencephalon. In situ hybridization for marker genes indicates that amygdalar glutamatergic neuron types are located in three major subdivisions: the lateral amygdala, the medial amygdala, and a newly defined area demarcated by high expression of the transcription factor Sim1. The gene expression profiles of these neuron types suggest similarities with specific neurons in the sauropsid and mammalian amygdala. In particular, we identify Sim1+ and Sim1+ Otp+ expressing neuron types, potentially homologous to the mammalian nucleus of the lateral olfactory tract (NLOT) and to hypothalamic-derived neurons of the medial amygdala, respectively. Taken together, our results reveal a surprising diversity of glutamatergic neuron types in the amygdala of salamanders, despite the anatomical simplicity of their brain. These results offer new insights on the cellular and anatomical complexity of the amygdala in tetrapod ancestors.


Assuntos
Tonsila do Cerebelo , Urodelos , Animais , Urodelos/metabolismo , Tonsila do Cerebelo/metabolismo , Fatores de Transcrição/genética , Telencéfalo/metabolismo , Neurônios/metabolismo , Mamíferos/metabolismo
14.
Stem Cell Reports ; 17(10): 2220-2238, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36179695

RESUMO

Telencephalic organoids generated from human pluripotent stem cells (hPSCs) are a promising system for studying the distinct features of the developing human brain and the underlying causes of many neurological disorders. While organoid technology is steadily advancing, many challenges remain, including potential batch-to-batch and cell-line-to-cell-line variability, and structural inconsistency. Here, we demonstrate that a major contributor to cortical organoid quality is the way hPSCs are maintained prior to differentiation. Optimal results were achieved using particular fibroblast-feeder-supported hPSCs rather than feeder-independent cells, differences that were reflected in their transcriptomic states at the outset. Feeder-supported hPSCs displayed activation of diverse transforming growth factor ß (TGFß) superfamily signaling pathways and increased expression of genes connected to naive pluripotency. We further identified combinations of TGFß-related growth factors that are necessary and together sufficient to impart broad telencephalic organoid competency to feeder-free hPSCs and enhance the formation of well-structured brain tissues suitable for disease modeling.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Humanos , Organoides/metabolismo , Células-Tronco Pluripotentes/metabolismo , Telencéfalo/metabolismo , Fator de Crescimento Transformador beta/metabolismo
15.
STAR Protoc ; 3(3): 101542, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842868

RESUMO

Motile cilia are hair-like structures that move and propel fluid, playing important roles in the physiology of organs. Here, we present a protocol to visualize and measure ciliary beating and cerebrospinal fluid (CSF) flow in the telencephalon of an adult zebrafish brain explant. We describe the preparation of brain explants, the recording of ciliary beating and CSF flow, and data analysis using ImageJ and MATLAB. These imaging and analysis techniques can be directly translated to other ciliated systems. For complete details on the use and execution of this protocol, please refer to D'Gama et al. (2021).


Assuntos
Cílios , Peixe-Zebra , Animais , Encéfalo/metabolismo , Cílios/metabolismo , Telencéfalo/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
16.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682795

RESUMO

Pax6 is a sequence-specific DNA binding transcription factor that positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system (CNS). As indicated by the morphological and functional abnormalities in spontaneous Pax6 mutant rodents, Pax6 plays pivotal roles in various biological processes in the CNS. At the initial stage of CNS development, Pax6 is responsible for brain patterning along the anteroposterior and dorsoventral axes of the telencephalon. Regarding the anteroposterior axis, Pax6 is expressed inversely to Emx2 and Coup-TF1, and Pax6 mutant mice exhibit a rostral shift, resulting in an alteration of the size of certain cortical areas. Pax6 and its downstream genes play important roles in balancing the proliferation and differentiation of neural stem cells. The Pax6 gene was originally identified in mice and humans 30 years ago via genetic analyses of the eye phenotypes. The human PAX6 gene was discovered in patients who suffer from WAGR syndrome (i.e., Wilms tumor, aniridia, genital ridge defects, mental retardation). Mutations of the human PAX6 gene have also been reported to be associated with autism spectrum disorder (ASD) and intellectual disability. Rodents that lack the Pax6 gene exhibit diverse neural phenotypes, which might lead to a better understanding of human pathology and neurodevelopmental disorders. This review describes the expression and function of Pax6 during brain development, and their implications for neuropathology.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Transtornos do Neurodesenvolvimento/genética , Fator de Transcrição PAX6/genética , Fator de Transcrição PAX6/metabolismo , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Telencéfalo/metabolismo
17.
Cell Rep ; 39(7): 110811, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35584663

RESUMO

Defects in primary cilia, cellular antennas that control multiple intracellular signaling pathways, underlie several neurodevelopmental disorders, but it remains unknown how cilia control essential steps in human brain formation. Here, we show that cilia are present on the apical surface of radial glial cells in human fetal forebrain. Interfering with cilia signaling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also show increased Sonic hedgehog (SHH) signaling, and cyclopamine treatment partially rescues this ventralization. In addition, ciliary expression of SMO, GLI2, GPR161, and several intraflagellar transport (IFT) proteins is increased. Overall, these findings establish the importance of primary cilia for dorsal and ventral patterning in human corticogenesis, indicate a tissue-specific role of INPP5E as a negative regulator of SHH signaling, and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.


Assuntos
Cílios , Proteínas Hedgehog , Monoéster Fosfórico Hidrolases , Telencéfalo , Cílios/enzimologia , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Organoides/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Telencéfalo/enzimologia , Telencéfalo/metabolismo
18.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163116

RESUMO

In the brain of teleost fish, radial glial cells are the major type of astroglial cells. To answer the question as to how radial glia structures adapt to the continuous growth of the brain, which is characteristic of salmonids, it is necessary to study various types of cells (neuronal precursors, astroglial cells, and cells in a state of neuronal differentiation) in the major integrative centers of the salmon brain (telencephalon and tectum opticum), using rainbow trout, Oncorhynchus mykiss, as a model. A study of the distribution of several molecular markers in the telencephalon and tectum with the identification of neural stem/progenitor cells, neuroblasts, and radial glia was carried out on juvenile (three-year-old) O. mykiss. The presence of all of these cell types provides specific conditions for the adult neurogenesis processes in the trout telencephalon and tectum. The distribution of glutamine synthetase, a molecular marker of neural stem cells, in the trout telencephalon revealed a large population of radial glia (RG) corresponding to adult-type neural stem cells (NSCs). RG dominated the pallial region of the telencephalon, while, in the subpallial region, RG was found in the lateral and ventral zones. In the optic tectum, RG fibers were widespread and localized both in the marginal layer and in the periventricular gray layer. Doublecortin (DC) immunolabeling revealed a large population of neuroblasts formed in the postembryonic period, which is indicative of intense adult neurogenesis in the trout brain. The pallial and subpallial regions of the telencephalon contained numerous DC+ cells and their clusters. In the tectum, DC+ cells were found not only in the stratum griseum periventriculare (SGP) and longitudinal torus (TL) containing proliferating cells, but also in the layers containing differentiated neurons: the central gray layer, the periventricular gray and white layers, and the superficial white layer. A study of the localization patterns of vimentin and nestin in the trout telencephalon and tectum showed the presence of neuroepithelial neural stem cells (eNSCs) and ependymoglial cells in the periventricular matrix zones of the brain. The presence of vimentin and nestin in the functionally heterogeneous cell types of adult trout indicates new functional properties of these proteins and their heterogeneous involvement in intracellular motility and adult neurogenesis. Investigation into the later stages of neuronal development in various regions of the fish brain can substantially elucidate the major mechanisms of adult neurogenesis, but it can also contribute to understanding the patterns of formation of certain brain regions and the involvement of RG in the construction of the definite brain structure.


Assuntos
Biomarcadores/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Neurônios/citologia , Oncorhynchus mykiss/crescimento & desenvolvimento , Colículos Superiores/citologia , Telencéfalo/citologia , Animais , Proliferação de Células , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Oncorhynchus mykiss/metabolismo , Colículos Superiores/metabolismo , Telencéfalo/metabolismo
19.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163257

RESUMO

Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Domínio Duplacortina/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Oncorhynchus/metabolismo , Salmão/metabolismo , Vimentina/metabolismo , Animais , Células Ependimogliais/metabolismo , Filamentos Intermediários , Neurogênese/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Telencéfalo/metabolismo
20.
Nat Commun ; 13(1): 633, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110543

RESUMO

The choroid plexus secretes cerebrospinal fluid and is critical for the development and function of the brain. In the telencephalon, the choroid plexus epithelium arises from the Wnt- expressing cortical hem. Canonical Wnt signaling pathway molecules such as nuclear ß-CATENIN are expressed in the mouse and human embryonic choroid plexus epithelium indicating that this pathway is active. Point mutations in human ß-CATENIN are known to result in the constitutive activation of canonical Wnt signaling. In a mouse model that recapitulates this perturbation, we report a loss of choroid plexus epithelial identity and an apparent transformation of this tissue to a neuronal identity. Aspects of this phenomenon are recapitulated in human embryonic stem cell derived organoids. The choroid plexus is also disrupted when ß-Catenin is conditionally inactivated. Together, our results indicate that canonical Wnt signaling is required in a precise and regulated manner for normal choroid plexus development in the mammalian brain.


Assuntos
Plexo Corióideo/metabolismo , Epitélio/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Plexo Corióideo/patologia , Feminino , Humanos , Masculino , Camundongos , Telencéfalo/metabolismo , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...